Lecture 19:
Context-Free Grammars

A Motivating Question

ryer oython3

>>> (137 + 42) - 2 * 3
173

>>> (60 + 37) + 5 * 8
137

>>> (200 [/ 2) + 6 [/ 2
103.0

>>2>

Mad Libs for Arithmetic

()

Int Op Int Op Int Op Int

This only lets us make arithmetic expressions
of the form (Int Op Int) Op Int Op Int.

What about arithmetic expressions that don’t
follow this pattern?

Slide credit: Amy Liu

Recursive Mad Libs

What can an arithmetic expression be?

int A single number.
Expr Op Expr Two expressions joined by an operator.
(Expr) A parenthesized expression.

A context-free grammar (or CFG) is a
recursive set of rules that define a
language.

(There’s a bunch of specific requirements about
what those rules can be; more on that in a bit.)

Arithmetic Expressions

 Here’s how we might express the
recursive rules from earlier as a CFG.

N

Expr — int

Expr — Expr Op Expr

Expr — (Expr)

Op =+ This is called a
Op - - production rule, 1t
Op - x says ‘it you see Expr,
you can replace it with
Op -/ Expr Op Expr.”

Arithmetic Expressions

 Here’s how we might express the
recursive rules from earlier as a CFG.

Expr — int

Expr — Expr Op Expr

Expr — (Expr)

—
This one says ‘it you
see Op, you can

replace it with =,

Arithmetic Expressions

 Here’s how we might express the
recursive rules from earlier as a CFG.

Expr — int

Expr — Expr Op Expr
Expr — (Expr)

Op -+

Op - -
Op - x
Op -/

Expr

Expr Op Expr
Expr Op int
int Op int
int / int

Ly

These red symbols are
called nonterminals.
They'vre placeholders fhat
get expanded later on,

Arithmetic Expressions

 Here’s how we might express the
recursive rules from earlier as a CFG.

Expr — int

Expr — Expr Op Expr
Expr — (EXpr)

Op -+

Op - -
Op - x
Op -/

Ly

Expr

Expr Op Expr
Expr Op int
int Op int

int / int}\

The symbols in blue
monospace are terminals,
They've the final characters
used in the string and
never gel replaced,

Arithmetic Expressions

 Here’s how we might express the
recursive rules from earlier as a CFG.

Expr — int Expr

Expr — Expr Op Expr Z Eig; 85](E]}g:)ll;r)
Expr - (Expr) = Expr Op (Expr Op Expr)
Op - + = Expr x (Expr Op Expr)
Op — - = int x (Expr Op Expr)

= int x (int Op Expr)
Op - x = int x (int Op int)

= int x (int + int)

Op -/

Context-Free Grammars

+ Formally, a context-free grammar |EXPr — int
is a collection of four items: Expr - Expr Op Expr

* a set of nonterminal symbols Expr - (Expr)
(also called variables), Op - +
* a set of terminal symbols (the Op — -
alphabet of the CFG), p
()p - X

* a set of production rules saying
how each nonterminal can be
replaced by a string of terminals
and nonterminals, and

Op -/

* a start symbol (which must be a
nonterminal) that begins the
derivation. By convention, the start
symbol is the one on the left-hand
side of the first production.

Some CFG Notation

* In today’s slides, capital letters in Bold Red
Uppercase will represent nonterminals.

*eg.A, B, C,D

 Lowercase letters in blue monospace will represent
terminals.

*eg.tuvw

 Lowercase Greek letters in gray italics will
represent arbitrary strings of terminals and
nonterminals.

ceg.a,yp w

* You don't need to use these conventions on your
own; just make sure whatever you do is readable.

A Notational Shorthand

Expr — int | Expr Op Expr | (Expr)
Op-+ | - | x|/

Derivations

Expr * A sequence of zero or more
= Expr Op Expr steps where nonterminals are
replaced by the right-hand
side of a production is called a
= Expr Op (Expr Op Expr) derivation.

= Expr x (Expr Op Expr) .

= Expr Op (Expr)

If string a derives string w,

= int x (Expr Op Expr) we write a =" w.

= int x (int Op Expr) « In the example on the left, we
= int x (int Op int) see that

= int x (int + int) Expr =" int x (int + int).

Expr — int | Expr Op Expr | (Expr)

Op—-+ | - | x|/

The Language of a Grammar

» If G is a CFG with alphabet X and start
symbol S, then the language of G is the
set

GE)={weX*|S="w}

 That is, £(G) is the set of strings of
terminals derivable from the start
symbol.

If G is a CFG with alphabet X and start symbol S,
then the language of G is the set

G)={weX*|S=*w}

Consider the following CFG G over 2 = {a, b, ¢, d}:

Q- Qa|dH
H - bHDb | c

Which of the following strings are in £(G)?

dca
dc
cad
bcb

dHaa

Answer at https://cs103.stanford.edu/pollev I

https://cs103.stanford.edu/pollev

Context-Free Languages

* A language L is called a context-free
language (or CFL) if there is a CFG G
such that L = ¥(G).

 Questions:

« How are context-free and regular languages
related?

« How do we design context-free grammars for
context-free languages?

CFGs and Regular Expressions

 CFGs consist purely of production rules of the
form A - w. They do not have the regular
expression operators * or u.

* You can use the symbols * and u if you'd like in
a CFG, but they just stand for themselves.

 Consider this CFG G:
S — a*b

 Here, ¥(G) = {a*b} and has cardinality one.
That is, £(G) # { a’b| n € N }.

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

It’s totally fine for a
production to replace a
nonterminal with the
empty string.

CFGs and Regular Expressions

« Theorem: Every regular language is context-free.

* Proof idea: Show how to convert an arbitrary
regular expression into a context-free grammar.

The Language of a Grammar

* Consider the following CFG G:
S - aSb | €

 What strings can this generate?

alalalalb|b|b|b

(G)={ad"|n€eN}

Regular

Languages

All Languages

Time-Out for Announcements!

Problem Set Five Graded

75% Percentile: 45 / 59 (76%)
50t Percentile: 41 / 59 (69%)
25% Percentile: 34 / 59 (58%)

0-24 20-29 30-34 35-39 40-44 45-49 050-504 55-239

Problem Set Seven

* Problem Set Six was due today at 1:00PM.

* You can extend the deadline to Saturday at 1:00PM using
a late day.
* Problem Set Seven goes out today. It’s due next
Friday at 1:00PM.

« It’s all about regular expressions, properties of regular
languages, and gives a first glimpse at nonregular

languages.
« We've tuned the length given that you have a midterm
next Monday.
* As always, come talk to us if you have any
questions.

Second Midterm Logistics

* Our second midterm exam is next Monday, November 10
from 7:00PM - 10:00PM

Seating assignments have changed.
= Check the seating assignment page again. =
Write down your new seat.

« Topic coverage is primarily lectures 06 - 13 (functions
through induction) and PS3 - PS5. Finite automata and
onward won’t be tested here.

« Because the material is cumulative, topics from PS1 - PS2 and
Lectures 00 - 05 are also fair game.

 The exam is closed-book and closed-computer. You can bring
one double-sided 8.5” X 11” sheet of notes with you.

* Contact us ASAP if you need an alternate exam and haven’'t
heard from us with date/time/place.

Our Advice

* Stay fed and rested. You are not a brain in a
jar. You are a rich, complex, beautiful human
being. Please take care of yourself.

* Read all questions before diving into them.
You don’t have to go sequentially. Read over each
problem so you know what to expect, then pick
whichever one looks easiest and start there.

* Reflect on how far you’ve come. How many of
these questions would you have been able to
understand two months ago? That’s the mark
that you’'re learning something!

Three Questions

 What’s something you know now that, at
the start of the quarter, you knew you didn’t
know?

 What’s something you know now that, at
the start of the quarter, you didn’t know you
didn’t know?

 What’s something you don’t know now that,
at the start of the quarter, you didn’t know
you didn’t know?

Back to CS103!

Designing CFGs

» Like designing DFAs, NFAs, and regular expressions,
designing CFGs is a cratft.

 When thinking about CFGs:

« Think recursively: Build up bigger structures from smaller
ones.

 Have a construction plan: Know in what order you will
build up the string.

 Store information in nonterminals: Have each
nonterminal correspond to some useful piece of information.

e Check our online “Guide to CFGs” for more
information about CFG design.

 We'll hit the highlights in the rest of this lecture.

Designing CFGs

elet2={a,b}andletL = {w e 2*| wis
a palindrome }

 We can design a CFG for L by thinking
inductively:
 Base case: g, a, and b are palindromes.

e If w is a palindrome, then awa and bwb are
palindromes.

* No other strings are palindromes.

S—>e|a|b|aSa|bSb

Designing CFGs

e let2={{ }}andletL={weX*|wisa
string of balanced braces }

 Some sample strings in L:

{{{}}}

{{}H}
{{H3H{H})
{{{{{}}{{}}}}

(3

{H}

Designing CFGs

e let2={{ }}andletL={weX*|wisa
string of balanced braces }

* Let's think about this recursively.

* Base case: the empty string is a string of
balanced braces.

* Recursive step: Look at the closing brace that
matches the first open brace.

(L0 MO0

Designing CFGs

e letX2={{ }}andletL={w e X*|wisa
string of balanced braces }

» Let's think about this recursively.

* Base case: the empty string is a string of
balanced braces.

* Recursive step: Look at the closing brace that
matches the first open brace. Removing the first
brace and the matching brace forms two new
strings of balanced braces.

S > {S}S |«

Designing CFGs

elet2={a,bjandletL ={weX*|w
has the same number of a's and b's }

Which of these CFGs have language L?

Answer at

https://cs103.stanford.edu/pollev

https://cs103.stanford.edu/pollev

Designing CFGs: A Caveat

 When designing a CFG for a language,
make sure that it

* generates all the strings in the language and

* never generates a string outside the
language.

* The first of these can be tricky - make
sure to test your grammars!

* You'll (most likely) design your own CFG
for this language on Problem Set 8.

Designing CFGs

* When designing CFGs, remember that each
nonterminal can be expanded out
independently of the others.

e IletX = {a, £} andletL = {a"Z=a" | n € N }.
 Is the following a CFG for L?
S - X=X
X—-aX | €

Finding a Build Order

. Let > = {a, 2} and let L = {a"%a" | n € N }.

 To build a CFG for L, we need to be more clever with
how we construct the string.

 If we build the strings of a's independently of one
another, then we can't enforce that they have the
same length.

« Idea: Build both strings of a's at the same time.
 Here's one possible grammar based on that idea:
S - £ | aSa S
aSa
aaSaa

aaa§aaa
d3dd=aaa

bu v

Summary of CFG Design Tips

* Look for recursive structures where they exist:
they can help guide you toward a solution.

* Keep the build order in mind - often, you'll
build two totally different parts of the string
concurrently.

« Usually, those parts are built in opposite directions:
one's built left-to-right, the other right-to-left.

» Use different nonterminals to represent
different structures.

Applications of Context-Free Grammars

CFGs for Programming Languages

BLOCK - STMT
| { STMTS }

STMTS - ¢
| STMT STMTS

STMT - EXPR;

if (EXPR) BLOCK
while (EXPR) BLOCK
do BLOCK while (EXPR);
BLOCK

EXPR — identifier
constant
EXPR + EXPR
EXPR - EXPR
EXPR * EXPR

Grammars in Compilers

* One of the key steps in a compiler is figuring out
what a program “means.”

* This is usually done by defining a grammar showing
the high-level structure of a programming language.

 There are certain classes of grammars (LL(1)
grammars, LR(1) grammars, LALR(1) grammars,
etc.) for which it's easy to figure out how a
particular string was derived.

* Tools like yacc or bison automatically generate
parsers from these grammars.

e Curious to learn more? Take CS143!

Natural Language Processing

* By building context-free grammars for actual
languages and applying statistical inference, it's
possible for a computer to recover the likely meaning

of a sentence.

* In fact, CFGs were first called phrase-structure
grammars and were introduced by Noam Chomsky in his
seminal work Syntactic Structures.

 They were then adapted for use in the context of
programming languages, where they were called Backus-

Naur forms.
 The Stanford Parser project is one place to look for
an example of this.

e Want to learn more? Take CS124 or CS224N!!

http://nlp.stanford.edu/software/lex-parser.shtml

Next Time

* No Class Monday (Midterm 2)
- Then, when we get back...

 Turing Machines

- What does a computer with unbounded memory
look like?

- How would you program it?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

